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A Distribution-Free Test for Model Comparisons

1. Introduction

Consider a finite set of m mathematical models which have each provided
estimates of subject data at n trial points. A general problem of model
comparisons is concerned with deciding if any one model is a better "fit"
of the data than the other models when there is no universally accepted yard-
stick of "fit'" or standard statistical test [Bush and Mosteller, 1959]. The
most common approach to the problem is to compare each model to the data using
some XZ-like procedure. The basic assumption involved therefn i{s one of
independence across trials (or blocks of trials) in order to satisfy the
additivity of the statistical test model. However, if the models are in any
way path-dependent and it is expected that the fit of the models are functions
of n, then the use of such comparison tests is inappropriate since some trials
would be more important than others for model comparison purposes. Tests of
the Kolmogorov-Smirnov, Cramdr-von Mises type (e.g., Birnbaum, 1953; Darling,
1957; Massey, 1951) and others (e.g., Anderson & Darling, 1954; Riedwyl, 19€7;
Tsao, 1955) require a continuous cumulative distribution function for the
random variable which accounts for the data. Atkinson (1969) presents several
tests for model comparisons which measure the deviations of each model's
predictions from some 'best'" formula which is found by regression.

This paper proposes a distribution-free index for model comparisons which
makes no assumptions about continufity. The index also allows for differential
weighting of trials according to the effect of each trial on the dats. For

example, suppose one is comparing several learning models and it can be assumed
Q
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that each model's proximity (as measured by some definition of proximity) to the
data is a monotonically increasing function of n. Then the trials over which
the models are compared should be differentially weighted by giving heavier
weights to the later trials; for it is in these trials that the models are ex-
pected to provide better estimates of the data points.

Let the measure of closeness of model j at trial i be defined as
f1J=|9iJ-yi|’ i=1: 2» N .1:1’ 25"" m,

where ?ij is the estimate of the data value y; given by model j at trial i. Tt

is apparent that if model j is a closer fit of the data than the other m-1 models,
then fij values will generally be smaller than fii values, k # j (and vice versa
for a poorer fit).

The goodness-of-fit iadex, defined in Section 2, assigns positive finteger
ranks, rij, to the fj4 for all i and j. Then weights, wj, are assigned to the
comparison points hased on theoretical or emplrical considerations as to the
importance of each trial for comparison purposes. Some properties, including
the conditions on the w; for asymptotic normality of the index distribution are
given. 1In Section 3, a discussion of large sample single-model and simultaneous
inference is presented. Section 4 suggests several possible permissible
weighting schemes and Section 5 illustrates the procedure with three prodability

learning models.

2. The Index and Its Properties

let the index, denoted, Ij’ be defined for the jth model as

) Z m_ip
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where m = number of models under consideration,

-

¥,, = rank of f,, for the jth model at trial i,
ij i} —
W
P, = L and
1 n
)
k=1
w, = weight assipgned to trial i,

Some Properties of Ij:

Proofs of these properties have been ommitted for the sake of brevity.

(2) a) 0gI5<1
b) If rij = k for all i then,
3) Ij = %“;—%

c) The maximum non-perfect (Ij # 1) value of Ij will occur when
model j is ranked 2 for the data point having the smallest weight and ranked 1
for all other data points. If rank w, is given the t+h data point then the

maximum non-perfect Ij value is given be

W

®) -
(m - 1) Z Wy
i=1
m
(5) d) ZIj -z
3=

O
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e) If it is assumed that model j fits the data no better than the

other models over all trials, then
(6) E(L;) = 1/2 .

f) 1If the rank value of model j at trial i is independent of the
rank value of model j at trial i+k (k > 0) and model j fits the data no better

than any other model, i.e., P(rij) = 1/m for all i, then

S
-

r m+ 1

) VAR(I;) = —-
J . LlZ(m - 1)

DI N
€

g) A direct application of the Lindenberg-Feller Theorem [Gnedenko

and Kolmogorov, 19547 shows that if

max w
(8) Lim L=0 ,
npof?
2
) ¥
i=1
then Ij is asymptotically normally distributed. The converse can also be shown
to hold.

3, Significance Tests with Ij

The implications of property g) is Section 2 is that, coupled with the

independence assumption of property f), we can, for sizable n, use I, to conduct

3

a test of

(9 Hot P(fyy > f54) = P(fyy < £}, § £k, § fixed,
Q
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which is distribution-free under H . Note that this H, is equivalent to

H -

of P(r:s) = P(ryp) for all i, j # k.

rij

Since, under Hg, 1l; is asymptotically normally distributed with mean and

3
variance given respectively by (6) and (7), the statistic

) JVER(Ty)
is approximately distributed N(0,1).

Wien confronted with more than one hypothesis, for example, when j is not
fixed in (9 ), a device for scaling down the significance level can be used. One
such device, resulting from the Bonferroni lnequality [Miller, 1966], suggests the
@/2m level of significance for simultaneous two-tailed tests. Crude though this
estimated significance level is, iis derivation does not depend on the I:;, j =1,

J

2, ..., m, bei gz independent as do most simultaneous test approximations.

4. Some Weighting Functions
The basic subjectiv: portion in tne development and use of index Ij is the
assignment of weights w;, i =1, 2, ..., n to the trials, This will depend on
the relative importance which the experimenter places on the trials used for the
comparisons of the models and can take on almost any functional form. There are,
however, several which (a) satisfy the condition in expréssion (8) for asymptotic

normality , (b) are rationmal, and (c) possess mathematical simplicity. Three

such weighting functions and their resulting variances are herein presented.

Function 1: W, =¢, ¢ $# o0 .

The effect here is one of proposing that the trials are all equal for

comparison purposes. This would be the case 1if an experimeter assumed random
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behavior models and did not expect the models to be better fits toward the end

of the trials than at the beginning of the trials or vice versa.

Here the variance of I, under the assumptions of property f) becomes

) = m+ 1
(10) VAR(IJ) TEE?E_:_TT

it
[

Function 2: Wi

For this case the assumption is that the later comparison trials are
more important than the earlier trials. This would be appropriate if an
experimenter felt that the models required the earlier trials to sequentially
reach a point beyond which the comparisons with data would be reasonzble.

Under this scheme and the assumptions of property f),

(2n + Y(m + 1)
18(n + 1)(n)(m - 1)

(11) VAR(I) =

Function 3: Wi =n-1i+1

The assumption for this scheme is that tbe earlier trials are more
important for model compariscn purposes than the later trials and would be
appropriate to use if one believed that some kind of '"fatigue' factor was
involved. For example, suppose it was suspected that beyond trial k, the
behavior being modeled gradually began to act in a random or erratic fashion.
Then the later trials could be thought of as "unreliable' for model comparisons.
The varfance here is the same as under Function 2 except for subsets of trials

in which the summatfon of (1) does not run over the full range from 1 to n.

5. Example

y Three probability learning models were compared over the last 10 trials
v

(& ]
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of a two-choice experiment. In this experiment, human subjects were asked to
predict which of two possible events, E1 or EZ’ would occur on each of a series
of trials. Predictions of E; and E, are denoted by responses Ay and Aj,
respectively. At the end of each trial, the subjects were permitted to observe
which event actually occurred. Event E1 had a fixed probability T = .7 of
occurring in a random sequence,

Model 1, a linear operator model, is due to Estes (1950) and in this

experiment assumed the form
(12) Pr (A; on trial ntl) = Pi,n¢l © m-[rm- Pl,n](l - e)“'1

where 0 is a rate of learning parameter, 0 < € < 1, estimated from observed
response frequencies. This model is usually appliud to experiments with many
more trials than the experiment of tlis example, but is included here for
illustrative purposes only.

Models 2 and 3 are of the form

(3) Plodl T €

where e is an experience vector of length n representing the trfals 1, 2, ..., n
and somposed of the digits one or zero depending on whether or not E1 occurred
on a particular trial, and p is a memory vector whos: n elements are propor-

tional to the probabilities of recalling the events of trials 1 to n such that

n
2_”1 =1, The development of the basic theory relatfve to (13) is due to
i=1

Overall (1960).
Models 2 and 3 differ in the estimation of elements in the memory vector,
B . Model 2 employed probabilities which were empirically determined by

Murdock (1962) under a variety of recall conditions, none of which involved

R
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binary items. The probability of recalling the ith item in a sequence of length

n was
. (n-i)
(14) P(i,n) = 1.00 + .27e~-77(1-1) _ 372(.042)-35>

The probabilities used in Model 3 were estimated from the data of a
previous experiment where subjects engaged in the two-choice task made recalls

at periodic fintervals. These probabilities were

(15) P(i,n) = .9047 - .0694(i) + .0775(i2/n) - .3577(i/n)?

ft
~)

Thirty-eight subjects performed rhe two-choice experiment with T
Table 1 presents the results of the last 10 trials.

Suppose that Model 3 is of particular fnterest. If a test of

Hyt P(fi3 > fik) = P(fi3 < fik) , 1=1,2, ..., 10, k=12,
is conducted at o = .05 under the weights of Function 2, I3 = ,8000 and
2. =28°.35-2059 . Since P(z > 2.059) ¥ .02, H_ is rejected and Model 3
I3 L1457 - ©

can be judged to be a significantly better fit than the other models. However,

with the weights of Function 1, I

3 .4083

= .7500 and 2y = 273 = .50 = 437, so that
P(z > .637) 2 26 , Thus Hy cannot be rejected. Models 1 and 2 are not signi-
ficant under either weighting function since their index values are .4545 and

. 2455 respectively using Function 2, and .45 and .30 respectively with Function

1. The Bonferroani test was not significant at the .05 level using Functions 1

or 2.
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Comments and Discussion

In any procedure ipvolving assigned ranks the prohlem of tied rarkings
merits discussion. We have purposely avoided the issue since the standard
procedures of randomly breaking ties or assigning average ranks arc quite
satisfactory for small numbers of ties. If the number of ties is large, say
> 20%, then we recommend that Ij not be used as an index of goodness-of-fit.
No adjustments are herein proposed to account for the number of ties in
calculating Ij.

The tests oi signif‘cance presented in Section 3 were exclusively for
"large" sample sizes, and we propose that n > 10 is sufficient to warrant the
use of the z statistic for testing purposes. Figure 1 graphic.lly illustrotes
the exact distribution of Ij under Hj for n = 10, m = 2, and wy = i,
i=1, 2, ..., 10. It appears that the normal distribution would yield quite
reasonable approximations. A more practical reason for not deriving and
providing exact distributions for n < 10 is purely financial. The reader
appreciates the massive computing job necessary to provide these distributions
for m > 2 and the need for such small sample distributions (since number of
trials usually exceeds 10) does not justify the expenditure at present. Only
if one were estimating a swall number of parameters by several models would
exact small-sample distributions be desirable.

The primary concern in this paper has been with the presentation of an
index of relative goodness-of-fit rather than its accompanying tests of
significance. This was due to the restrictive assumptions underlying the

test of Ho' The testable hypothesis itself may be so general in form that

ERIC
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a researcher would not want to test 1t in the first place. This, as in any
test of hypothesis, does not invalidate the use of the index with its accom-
panying properties fur descriptive purposes as a goodness-of-fit indicator.
The aspect of selecting weight functions is cbviously a crucial one and

we have presented only a small selection of simple functions. We have also
assumed that the same weight function would be used for each model for a
particular comparison. The problem of assigning a priori a 'best' function
per mcdel and then making the ccmparisons was not addressed and indeed would

be a difficult problem to handle statistically.

LR
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APPENDIX

Simulated Distributions of any Ij for
m=2, 3, 4, 5 over 100 Trials Assuming

Pr(rij) =1/ for i =1, 2, ...100.

o
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